
C2: Web Services and Multiple URLs 1

COM644 Full-Stack Web and App Development

Practical C2: Web Services and Multiple URLs

Aims
• To introduce Angular Web Services as a means of retrieving data from

the back end of an application
• To create a first Web Service
• To Introduce JavaScript Promises
• To deminstrate injecting a WebService into a Component
• To use the data returned from a Web Service in the front end of an

Angular application
• To appreciate Cross Origin Resource Sharing (CORS)
• To introduce the Angular RouterModule
• To support multiple URLs in a single app via the RouterModule
• To implement internal linking via the routerLink element

Contents
C2.1 ANGULAR WEB SERVICES .. 2

C2.1.1 CREATING A WEB SERVICE... 2
C2.1.2 USING THE WEB SERVICE .. 3
C2.1.3 CREATING A WEB SERVICE... 7
C2.1.4 USING THE DATA RETURNED .. 9

C2.2 PROVIDING A ROUTING SERVICE FOR MULTIPLE URLS .. 12
C2.2.1 CREATING A BASIC HOME PAGE ... 12
C2.2.2 ROUTING IN AN ANGULAR APPLICATION ... 13

C2.3 AN ADDITIONAL ROUTE AND WEB SERVICE ENDPOINT .. 16
C2.3.1 PROVIDING THE BUSINESS CONTROLLER ... 16
C2.3.2 UPDATING THE WEBSERVICE ... 18
C2.3.3 MAKING THE CONNECTION .. 18

C2: Web Services and Multiple URLs 2

Our current version of the We MEAN Business frontend application displays business
information as Bootstrap-styled card elements – but the business data is all hard-coded in
our Angular Component.

In this practical, we will see how to retrieve the data from the backend of the application
and build a simple database-driven app supporting 3 URLs – one to display a collection of
businesses, one to display a single business and one to act as a home page.

C2.1 Angular Web Services

A Web Service is the component of an Angular application that interacts with the backend
to retrieve (and store) data. We will deal with saving data to the database in a later
practical, but as a starting point, let’s create a basic Web Service to retrieve information on
a collection of business objects.

C2.1.1 Creating a Web Service

In the interests of code maintainability, it is a good idea to keep the Web Service separate
from the rest of the application, so we will create it in a new code file web.service.ts within
the /src/app folder.

First, we create and export a class to hold our new Web Service and define the function
getBusinesses() that will return the data from the API. In order to fetch the data, the
function will need to make an HTTP call to the backend, so we import the Angular Http
module. To render the Http module available to the class, we need to inject it into the
class constructor, so we specify a constructor() function that takes an instance of the
Http object as a private parameter. Note the TypeScript syntax for specifying data types.
Here, we are saying that the constructor has a parameter called http which is of type (is an
instance of the) Http object.

File: C2/src/app/web.service.ts

import { Http } from '@angular/http';

export class WebService {

 constructor(private http: Http) {}

 getBusinesses() {
 }
}

C2: Web Services and Multiple URLs 3

C2.1.2 Using the Web Service

Now that an instance of the Http object is available within the class, we can use it inside
the getBusinesses() function by invoking its get() method and passing it the URL of
our API endpoint to fetch all businesses.

Note that by default, the get() method returns an Observable – a JavaScript structure we
will examine later, but for now, we will adopt a more simple approach and convert the
Observable to a Promise by passing the result to the toPromise() method.

Note: A JavaScript Promise is an object that represents the eventual result of an
asynchronous operation. It allows code execution to continue, without waiting for the
result of some time-consuming computation or I/O operation.

In the context presented here, the Promise is used to allow the http.get() instruction to
behave in a non-blocking manner. As JavaScript is single-threaded, this allows execution to
proceed more efficiently, with the code that depends on the result of the Promise deferred
until the data is available.

Promises are made available through a library called RxJs, so we also import this into our
Angular Service definition.

File: C2/src/app/web.service.ts

import { Http } from '@angular/http';
import 'rxjs/add/operator/toPromise';

@Injectable()
export class WebService {

 constructor(private http: Http) {}

 getBusinesses() {
 return this.http.get(
 'http://localhost:3000/api/businesses')
 .toPromise();
 }
}

C2: Web Services and Multiple URLs 4

Finally, we need to specify our new element as a Service. Just as we specified a new
component with an @Component decorator, so we need to also specify the service with an
@Injectable decorator, which we also need to import from @angular/core

File: C2/src/app/web.service.ts

import { Http } from '@angular/http';
import 'rxjs/add/operator/toPromise';
import { Injectable } from '@angular/core';

@Injectable()
export class WebService {

 constructor(private http: Http) {}

 getBusinesses() {
 return this.http.get(
 'http://localhost:3000/api/businesses')
 .toPromise();
 }
}

Before we can use the Service, we need to register it with the main module. In order to do
this, we need to

i) import the WebService and Http module into app.module.ts;

ii) specify that the WebService is a Service by including it in the list of
providers; and

iii) include the HttpModule in the imports list.

The code box that follows shows these additions made to the main app.module.ts file.

C2: Web Services and Multiple URLs 5

File: C2/src/app/app.module.ts

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';
import { BusinessesComponent } from './businesses.component';
import { WebService } from './web.service';
import { HttpModule } from '@angular/http';

@NgModule({
 declarations: [
 AppComponent, BusinessesComponent
],
 imports: [
 BrowserModule, HttpModule
],
 providers: [WebService],
 bootstrap: [AppComponent]
})
export class AppModule { }

Now, we import the new WebService into our BusinessesComponent and prepare to
receive the data from the API by removing the hard-coded JSON collection of businesses.

File: C2/src/app/businesses.component.ts

import { Component } from '@angular/core';
import { WebService } from './web.service';

@Component({
 selector: 'businesses',
 templateUrl: './businesses.component.html',
 styleUrls: ['./businesses.component.css']
})

export class BusinessesComponent {

 constructor(private webService: WebService) {}

 business_list = [
];
}

C2: Web Services and Multiple URLs 6

Once the WebService has been imported into the BusinessesComponent, we need to
inject it into the constructor just as we did previously in the definition of the Service.

File: C2/src/app/businesses.component.ts

import { Component } from '@angular/core';
import { WebService } from './web.service';

@Component({
 selector: 'businesses',
 templateUrl: './businesses.component.html',
 styleUrls: ['./businesses.component.css']
})

export class BusinessesComponent {

 constructor(private webService: WebService) {}

 business_list = [
];
}

Next, we call the WebService by using the special Angular ngOnInit() function that is
fired automatically whenever an object has been created

File: C2/src/app/businesses.component.ts

...

export class BusinessesComponent {

 constructor(private webService: WebService) {}

 ngOnInit() {
 this.webService.getBusinesses();
 }

 business_list = [
];
}

C2: Web Services and Multiple URLs 7

C2.1.3 Creating a Web Service

If we save this and run it in our browser (remember to start the database server and the B6
backend application first), we should see an error message in the browser informing us that
there has been an Access-Control-Allow-Origin error. This means that we need to
enable Cross-Origin Resource Sharing (CORS) on our backend application. This will allow
one application (the frontend) to receive and accept data from another (the backend).

Figure C2.1 Access-Control-Allow-Origin error

This requires us to go back to the B6 application and add the lines identified in the code box
below to app.js.

C2: Web Services and Multiple URLs 8

File: B6/api/app.js

...

app.use (function (req, res, next) {
 res.header('Access-Control-Allow-Origin', '*');
 res.header('Access-Control-Allow-Headers',
 'Origin, X-Requested-With, Content-Type,
 Accept');
 next();
});

app.use(express.static(path.join(__dirname, 'public')));

...

Now, if we re-launch the backend application and refresh the browser, we should see that
the error message has vanished – but we still have no data returned.

Figure C2.2 Access-Control-Allow-Origin error resolved

C2: Web Services and Multiple URLs 9

C2.1.4 Using the data returned

In order to make use of the data returned from the API, we need to do two things.

First, we need to assign the data returned to a variable (in this case, a variable called
response). Then, we need to be mindful that the getBusinesses() function in the
WebService returns a promise rather than data, so to use the promise we need to prepend
the keyword await to the call to the function and then designate the function containing
the call as being asynchronous by the keyword async.

File: C2/src/app/businesses.component.ts

...

export class BusinessesComponent {

 constructor(private webService: WebService) {}

 async ngOnInit() {
 var response = await this.webService.getBusinesses();
 }

 business_list = [
];
}

There is one final configuration step. Since await and async are features of JavaScript ES6
(the latest version of JavaScript), we need to make sure that Angular is set up to deliver ES6
code. (Remember that all TypeScript is compiled to JavaScript when we issue the ng
serve command).

To verify this, check in the file tsconfig.json and make sure that the target value in the
compilerOptons object is set to es6.

C2: Web Services and Multiple URLs 10

File: C2/tsconfig.json

{
 "compileOnSave": false,
 "compilerOptions": {
 "outDir": "./dist/out-tsc",
 "sourceMap": true,
 "declaration": false,
 "moduleResolution": "node",
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true,
 "target": "es6",
 "typeRoots": [
 "node_modules/@types"
],
 "lib": [
 "es2017",
 "dom"
]
 }
}

Finally, we can test that the data is being retrieved from the API by using the json()
method to access the data returned as a JSON object and logging it to the console.

File: C2/src/app/businesses.component.ts

...

export class BusinessesComponent {

 constructor(private webService: WebService) {}

 async ngOnInit() {
 var response = await this.webService.getBusinesses();
 console.log(response.json());
 }

 business_list = [
];
}

The result can be seen in Figure C2.3 below.

C2: Web Services and Multiple URLs 11

Figure C2.3 Data returned by the API

Now that we are confident that the data is being returned correctly, we can assign our
previous business_list variable to the JSON data fetched and verify that it is being
presented in the browser.

File: C2/src/app/businesses.component.ts

...

export class BusinessesComponent {

 constructor(private webService: WebService) {}

 async ngOnInit() {
 var response = await this.webService.getBusinesses();
 this.business_list = response.json();
 }

 business_list = [
];
}

C2: Web Services and Multiple URLs 12

Figure C2.4 Data returned from API and displayed in the browser

C2.2 Providing a Routing Service for Multiple URLs

Although one of the main principles of Angular is that apps are single-page in nature, this
essentially means that the browser is never completely re-loaded – even though the
application supports multiple URLs to provide different views of the information being
delivered.

In this section, we will create a plain page to use as the homepage for our application and
then see how to specify different URLs to navigate between it and the previously
implemented page that displays details of businesses.

C2.2.1 Creating a Basic Home Page

A static HTML page is easily generated by creating TypeScript, HTML and (optional) CSS files
for a new Component, but by providing only the minimal TypeScript definition and having all
content served by the HTML template.

C2: Web Services and Multiple URLs 13

Create new files in the src/app folder for home.component.ts, home.component.html and
home.component.css and provide minimal content as shown below.

Note that the home.component.ts file is most easily created by copying the existing
businesses.component.ts file and deleting/modifying the appropriate elements. We will
leave home.component.css empty (for now).

File: C2/src/app/home.component.ts

import { Component } from '@angular/core';

@Component({
 selector: 'home',
 templateUrl: './home.component.html',
 styleUrls: ['./home.component.css']
})
export class HomeComponent { }

File: C2/src/app/home.component.html

<div class="jumbotron">
 <h1>We MEAN Business</h1>
</div>

C2.2.2 Routing in an Angular Application

Angular provides a very useful Router module that manages multiple URLs within an
application. To make use of this, we need to import it into our app.module TypeScript file
and then include it in the module’s imports list. Note that the entry in the imports list
requires that we pass a routes element as a parameter to the forRoot() method, so we
create an (initially) empty routes list and provide it to the RouterModule import
specification.

C2: Web Services and Multiple URLs 14

File: C2/src/app/app.module.ts

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { RouterModule } from '@angular/router';
...

var routes = [];

@NgModule({
...

 imports: [
 BrowserModule, HttpModule, RouterModule.forRoot(routes)
],
...

Next, we need to remove references to the BusinessesComponent from the main
app.component file, since the router will now control what is displayed.

First we remove the import statement that refers to the BusinessesComponent from
app.componment.ts

File: C2/src/app/app.component.ts

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})

export class AppComponent {
 title = 'app';
}

and then remove the <businesses> element from app.component.html.

File: C2/src/app/app.component.html

<!-- empty file -->

C2: Web Services and Multiple URLs 15

We need to replace this content with somewhere to display the currently selected route, so
we add a special Angular element <router-outlet> to the app-component.html file.

File: C2/src/app/app.component.html

<router-outlet></router-outlet>

We can add the routes for the two components, setting the HomeComponent as the default
route (/) while the BusinessesComponent will be accesses by the URL /businesses. To
achieve this, we return to the routes list previously defined as empty in app.module.ts and
add a pair of objects – each specified as a route (path) and a component.

Finally, we import the HomeComponent into app.module.ts and include it in the module’s
declarations list.

File: C2/src/app/app.module.ts

...

import { HomeComponent } from './home.component';

var routes = [
 {
 path: '',
 component: HomeComponent
 },
 {
 path: 'businesses',
 component: BusinessesComponent
 }
];

@NgModule({
 declarations: [
 AppComponent, BusinessesComponent, HomeComponent
],

...

Now, if we run the application and visit the URL http://localhost:4200 we should see the
default home page, while http://localhost:4200/businesses displays the list of business
details seen earlier.

C2: Web Services and Multiple URLs 16

Figure C2.5 Home page
http://localhost:4200/

Figure C2.6 Businesses directory
http://localhost:4200/businesses

C2.3 An Additional Route and Web Service Endpoint

As a quick example of providing a new route and extending the WebService, we will
consider the case where we provide a way of displaying only one of the collection of
businesses.

C2.3.1 Providing the Business Controller

The Controller to handle the display of a single business is very similar to that displaying
multiple businesses. The fastest way to specify these is to create new files for
business.component.ts, business.component.html and business.component.css and to copy
and modify the contents of the businesses equivalents as shown below.

In business.component.ts, we update the selector, templateUrl and styleUrls values
in the Decorator, before making only minor changes to the class definition.

First, we specify a call to a new WebService function getBusiness() that takes an
business ID as a parameter. Then, we assign the data returned from that function to a
JavaScript object business (instead of the previous business_list array)

C2: Web Services and Multiple URLs 17

File: C2/src/app/business.component.ts

...
@Component({
 selector: 'business',
 templateUrl: './business.component.html',
 styleUrls: ['./business.component.css']
})

export class BusinessComponent {
 constructor(private webService: WebService) {}

 async ngOnInit() {
 var response = await this.webService.getBusiness(id);
 this.business = response.json();
 }

 business = { }
}

The file business.component.html will be exactly the same as for the
BusinessesComponent except that we remove the <div> element containing the
*ngFor directive, so that only a single Bootstrap card is produced with the data held in the
class variable {{ business }}.

File: C2/src/app/business.component.html

...

<div class="container">
 <div class="row">
 <div class="col-sm-12">
 <div class="card text-white bg-primary mb-3">
 <div class="card-header">
 {{ business.name }}
 </div>
 <div class="card-body">
 This business is based in
 {{ business.city }}
 </div>
 <div class="card-footer">
 {{ business.review_count }}
 reviews available
 </div>
 </div>
 </div> <!-- col -->
 </div> <!-- row -->
</div> <!-- container -->

C2: Web Services and Multiple URLs 18

C2.3.2 Updating the WebService

Our code in the BusinessComponent Typescript file makes reference to a new
WebService endpoint called getBusiness(), which takes a business ID as a parameter.
We can now update the web.service.ts code to include this new endpoint as a function that
calls the API endpoint http://localhost:3000/businesses/12345, where 12345 is the _id
value of one of the business objects.

File: C2/src/app/web.service.ts

...

export class WebService {

 constructor(private http: Http) {}

 getBusinesses() {
 return this.http.get(
 'http://localhost:3000/api/businesses')
 .toPromise();
 }

 getBusiness(id) {
 return this.http.get(
 'http://localhost:3000/api/businesses/'+id)
 .toPromise();
 }
}

C2.3.3 Making the connection

Now that we have the BusinessComponent and the updated WebService in place, we
can add the route and create a clickable link from the list of businesses.

First, we add the route by importing the new BusinessComponent into app.module and
adding it to the declarations list. We also provide a new entry into the routes array in
app.module.ts which specifies the id parameter using the same :id syntax that we have
previously seen in other instances of application routing.

C2: Web Services and Multiple URLs 19

File: C2/src/app/app.module.ts

...

import { BusinessComponent } from './business.component';

var routes = [
 {
 path: '',
 component: HomeComponent
 },
 {
 path: 'businesses',
 component: BusinessesComponent
 },
 {
 path: 'businesses/:id',
 component: BusinessComponent
 }
];

@NgModule({
 declarations: [
 AppComponent, BusinessesComponent, HomeComponent,
 BusinessComponent
],

...

Finally, we need to make the individual card entries in the BusinessesController HTML
template clickable by adding a routerLink entry to each card element.

The routerLink entry specifes that clicking on the element to which it is applied will result
in that destination being displayed in the <router-outlet> element provided earlier in
app.component.html.

There are three important elements to the highlighted code here.

i) We provide the two components to the route (‘businesses’ and the id value) as
an array of values. Note the business._id property returning the _id value
for the selected business.

ii) As we require the actual business._id value to be inserted into this array (i.e.
we do not want the literal string “business._id”), we enclose the routerLink
attribute in [] brackets. This is a common feature of Angular that we will explain
further in a later practical.

C2: Web Services and Multiple URLs 20

iii) We use the inline style rule to have the cursor change to a pointer when it is
positioned over the card object. This is a visual cue to the user that the card is a
clickable element on the page.

File: C2/src/app/businesses.component.html

...

<div class="card text-white bg-primary mb-3"
 [routerLink]="['/businesses', business._id]"
 style="cursor: pointer">
...

The final task is to retrieve the id parameter from the route and insert it into the call to the
WebService function.

First, we include the ActivatedRoute module into business.component.ts, which is the
TypeScript file in which the parameter value is required. We also inject this into the
constructor by specifying a parameter route as an instance of ActivatedRoute.

Finally, we update business.components.ts to retrieve the id value passed in the URL by the
somewhat clunky syntax route.snapshot.params.id.

File: C2/src/app/business.component.ts

...

import { ActivatedRoute } from '@angular/router';

...

export class BusinessComponent {

 constructor(private webService: WebService,
 private route: ActivatedRoute) {}

 async ngOnInit() {
 var response =
 await this.webService.getBusiness(
 this.route.snapshot.params.id);
 this.business = response.json();
 }

 business = { }
}

C2: Web Services and Multiple URLs 21

Testing the application in the browser now presents the list of businesses as clickable card
elements, while clicking on one of them demonstrates our new route and controller that
displays information about a single business.

Figure C2.7 A clickable list of businesses
http://localhost:4200/businesses

Figure C2.8 Clicking on a single business
http://localhost:4200/businesses/12345

